(5a)^2/5+12=57

Simple and best practice solution for (5a)^2/5+12=57 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5a)^2/5+12=57 equation:



(5a)^2/5+12=57
We move all terms to the left:
(5a)^2/5+12-(57)=0
We add all the numbers together, and all the variables
5a^2/5-45=0
We multiply all the terms by the denominator
5a^2-45*5=0
We add all the numbers together, and all the variables
5a^2-225=0
a = 5; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·5·(-225)
Δ = 4500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4500}=\sqrt{900*5}=\sqrt{900}*\sqrt{5}=30\sqrt{5}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{5}}{2*5}=\frac{0-30\sqrt{5}}{10} =-\frac{30\sqrt{5}}{10} =-3\sqrt{5} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{5}}{2*5}=\frac{0+30\sqrt{5}}{10} =\frac{30\sqrt{5}}{10} =3\sqrt{5} $

See similar equations:

| 5m-1=4(m+2) | | 7x+1=2x+2 | | 15x+0.25x=20x+0.05x | | (4x-9)-(2x=6) | | 5^y=400 | | 4x+7=14-3x | | 78=x*0.5 | | 46x^2-50x+51=0 | | 5(x+8)=17x+4 | | 1/x-5x=5 | | 3(a-3)+4a+7=5a-3 | | 3x÷10=-9 | | 3t÷10=-9 | | 3x=21÷9 | | -3+7-9+8x=54 | | 5(3a–4)=7(6a+3)–11 | | x÷5-7=3 | | 12+5a=3(6a-a) | | x^2-0.36x^2=0.36 | | 2(5a+-10)+-9a+6=0 | | 16=6(w+3)-8w | | 119=x+(2x-5) | | X+(2x-5)=119 | | 37+17=9+x | | 6a-2a+12=42 | | x-5.5=0.45 | | 7x/5=14/15 | | 2(x+12)=6(x-1)-14 | | 7x+6x-2x=17+5 | | X/2-1=x/3-4 | | 2(1.5x-4)=2 | | 63*8+x+41=55 |

Equations solver categories